Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint Unicode version

Theorem bdcint 10668
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint  |- BOUNDED 
|^| x

Proof of Theorem bdcint
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 10612 . . . . 5  |- BOUNDED  y  e.  z
21ax-bdal 10609 . . . 4  |- BOUNDED  A. z  e.  x  y  e.  z
3 df-ral 2353 . . . 4  |-  ( A. z  e.  x  y  e.  z  <->  A. z ( z  e.  x  ->  y  e.  z ) )
42, 3bd0 10615 . . 3  |- BOUNDED  A. z ( z  e.  x  ->  y  e.  z )
54bdcab 10640 . 2  |- BOUNDED  { y  |  A. z ( z  e.  x  ->  y  e.  z ) }
6 df-int 3637 . 2  |-  |^| x  =  { y  |  A. z ( z  e.  x  ->  y  e.  z ) }
75, 6bdceqir 10635 1  |- BOUNDED 
|^| x
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1282   {cab 2067   A.wral 2348   |^|cint 3636  BOUNDED wbdc 10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063  ax-bd0 10604  ax-bdal 10609  ax-bdel 10612  ax-bdsb 10613
This theorem depends on definitions:  df-bi 115  df-clab 2068  df-cleq 2074  df-clel 2077  df-ral 2353  df-int 3637  df-bdc 10632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator