| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clelab | Unicode version | ||
| Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| clelab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2068 |
. . . 4
| |
| 2 | 1 | anbi2i 444 |
. . 3
|
| 3 | 2 | exbii 1536 |
. 2
|
| 4 | df-clel 2077 |
. 2
| |
| 5 | nfv 1461 |
. . 3
| |
| 6 | nfv 1461 |
. . . 4
| |
| 7 | nfs1v 1856 |
. . . 4
| |
| 8 | 6, 7 | nfan 1497 |
. . 3
|
| 9 | eqeq1 2087 |
. . . 4
| |
| 10 | sbequ12 1694 |
. . . 4
| |
| 11 | 9, 10 | anbi12d 456 |
. . 3
|
| 12 | 5, 8, 11 | cbvex 1679 |
. 2
|
| 13 | 3, 4, 12 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: elrabi 2746 |
| Copyright terms: Public domain | W3C validator |