ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfandc Unicode version

Theorem dfandc 811
Description: Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 598. (Contributed by Jim Kingdon, 30-Apr-2018.)
Assertion
Ref Expression
dfandc  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  /\  ps )  <->  -.  ( ph  ->  -.  ps ) ) ) )

Proof of Theorem dfandc
StepHypRef Expression
1 pm3.2im 598 . . . 4  |-  ( ph  ->  ( ps  ->  -.  ( ph  ->  -.  ps )
) )
21imp 122 . . 3  |-  ( (
ph  /\  ps )  ->  -.  ( ph  ->  -. 
ps ) )
3 simplimdc 790 . . . . . . 7  |-  (DECID  ph  ->  ( -.  ( ph  ->  -. 
ps )  ->  ph )
)
43adantr 270 . . . . . 6  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( -.  ( ph  ->  -.  ps )  ->  ph ) )
54imp 122 . . . . 5  |-  ( ( (DECID 
ph  /\ DECID  ps )  /\  -.  ( ph  ->  -.  ps )
)  ->  ph )
6 simprimdc 789 . . . . . . 7  |-  (DECID  ps  ->  ( -.  ( ph  ->  -. 
ps )  ->  ps ) )
76adantl 271 . . . . . 6  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( -.  ( ph  ->  -.  ps )  ->  ps ) )
87imp 122 . . . . 5  |-  ( ( (DECID 
ph  /\ DECID  ps )  /\  -.  ( ph  ->  -.  ps )
)  ->  ps )
95, 8jca 300 . . . 4  |-  ( ( (DECID 
ph  /\ DECID  ps )  /\  -.  ( ph  ->  -.  ps )
)  ->  ( ph  /\ 
ps ) )
109ex 113 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( -.  ( ph  ->  -.  ps )  ->  ( ph  /\  ps ) ) )
112, 10impbid2 141 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ph  /\ 
ps )  <->  -.  ( ph  ->  -.  ps )
) )
1211ex 113 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( ph  /\  ps )  <->  -.  ( ph  ->  -.  ps ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103  DECID wdc 775
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662
This theorem depends on definitions:  df-bi 115  df-dc 776
This theorem is referenced by:  pm4.63dc  813  pm4.54dc  838
  Copyright terms: Public domain W3C validator