ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbothdc Unicode version

Theorem ifbothdc 3380
Description: A wff  th containing a conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
ifbothdc.1  |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th )
)
ifbothdc.2  |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
ifbothdc  |-  ( ( ps  /\  ch  /\ DECID  ph )  ->  th )

Proof of Theorem ifbothdc
StepHypRef Expression
1 iftrue 3356 . . . . . 6  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
21eqcomd 2086 . . . . 5  |-  ( ph  ->  A  =  if (
ph ,  A ,  B ) )
3 ifbothdc.1 . . . . 5  |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th )
)
42, 3syl 14 . . . 4  |-  ( ph  ->  ( ps  <->  th )
)
54biimpcd 157 . . 3  |-  ( ps 
->  ( ph  ->  th )
)
653ad2ant1 959 . 2  |-  ( ( ps  /\  ch  /\ DECID  ph )  ->  ( ph  ->  th )
)
7 iffalse 3359 . . . . . 6  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
87eqcomd 2086 . . . . 5  |-  ( -. 
ph  ->  B  =  if ( ph ,  A ,  B ) )
9 ifbothdc.2 . . . . 5  |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch  <->  th )
)
108, 9syl 14 . . . 4  |-  ( -. 
ph  ->  ( ch  <->  th )
)
1110biimpcd 157 . . 3  |-  ( ch 
->  ( -.  ph  ->  th ) )
12113ad2ant2 960 . 2  |-  ( ( ps  /\  ch  /\ DECID  ph )  ->  ( -.  ph  ->  th ) )
13 exmiddc 777 . . 3  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
14133ad2ant3 961 . 2  |-  ( ( ps  /\  ch  /\ DECID  ph )  ->  ( ph  \/  -.  ph ) )
156, 12, 14mpjaod 670 1  |-  ( ( ps  /\  ch  /\ DECID  ph )  ->  th )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103    \/ wo 661  DECID wdc 775    /\ w3a 919    = wceq 1284   ifcif 3351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3an 921  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-if 3352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator