| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orandc | Unicode version | ||
| Description: Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.) |
| Ref | Expression |
|---|---|
| orandc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.56 839 |
. 2
| |
| 2 | dcn 779 |
. . . . 5
| |
| 3 | 2 | adantr 270 |
. . . 4
|
| 4 | dcn 779 |
. . . . 5
| |
| 5 | 4 | adantl 271 |
. . . 4
|
| 6 | dcan 875 |
. . . 4
| |
| 7 | 3, 5, 6 | sylc 61 |
. . 3
|
| 8 | dcor 876 |
. . . 4
| |
| 9 | 8 | imp 122 |
. . 3
|
| 10 | con2bidc 802 |
. . 3
| |
| 11 | 7, 9, 10 | sylc 61 |
. 2
|
| 12 | 1, 11 | mpbii 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: gcdaddm 10375 |
| Copyright terms: Public domain | W3C validator |