ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.42r Unicode version

Theorem pm4.42r 912
Description: One direction of Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
pm4.42r  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
-.  ps ) )  ->  ph )

Proof of Theorem pm4.42r
StepHypRef Expression
1 simpl 107 . 2  |-  ( (
ph  /\  ps )  ->  ph )
2 simpl 107 . 2  |-  ( (
ph  /\  -.  ps )  ->  ph )
31, 2jaoi 668 1  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
-.  ps ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662
This theorem depends on definitions:  df-bi 115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator