| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.26-3 | Unicode version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| r19.26-3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 921 |
. . 3
| |
| 2 | 1 | ralbii 2372 |
. 2
|
| 3 | r19.26 2485 |
. 2
| |
| 4 | r19.26 2485 |
. . . 4
| |
| 5 | 4 | anbi1i 445 |
. . 3
|
| 6 | df-3an 921 |
. . 3
| |
| 7 | 5, 6 | bitr4i 185 |
. 2
|
| 8 | 2, 3, 7 | 3bitri 204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-ral 2353 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |