| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralab2 | Unicode version | ||
| Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ralab2.1 |
|
| Ref | Expression |
|---|---|
| ralab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2353 |
. 2
| |
| 2 | nfsab1 2071 |
. . . 4
| |
| 3 | nfv 1461 |
. . . 4
| |
| 4 | 2, 3 | nfim 1504 |
. . 3
|
| 5 | nfv 1461 |
. . 3
| |
| 6 | eleq1 2141 |
. . . . 5
| |
| 7 | abid 2069 |
. . . . 5
| |
| 8 | 6, 7 | syl6bb 194 |
. . . 4
|
| 9 | ralab2.1 |
. . . 4
| |
| 10 | 8, 9 | imbi12d 232 |
. . 3
|
| 11 | 4, 5, 10 | cbval 1677 |
. 2
|
| 12 | 1, 11 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-ral 2353 |
| This theorem is referenced by: ralrab2 2757 ssintab 3653 |
| Copyright terms: Public domain | W3C validator |