| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexim | Unicode version | ||
| Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2353 |
. . . 4
| |
| 2 | simpl 107 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | pm3.31 258 |
. . . . . 6
| |
| 5 | 3, 4 | jcad 301 |
. . . . 5
|
| 6 | 5 | alimi 1384 |
. . . 4
|
| 7 | 1, 6 | sylbi 119 |
. . 3
|
| 8 | exim 1530 |
. . 3
| |
| 9 | 7, 8 | syl 14 |
. 2
|
| 10 | df-rex 2354 |
. 2
| |
| 11 | df-rex 2354 |
. 2
| |
| 12 | 9, 10, 11 | 3imtr4g 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-ral 2353 df-rex 2354 |
| This theorem is referenced by: reximia 2456 reximdai 2459 r19.29 2494 reupick2 3250 ss2iun 3693 chfnrn 5299 |
| Copyright terms: Public domain | W3C validator |