| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgenm | Unicode version | ||
| Description: Generalization rule that eliminates an inhabited class requirement. (Contributed by Jim Kingdon, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| rgenm.1 |
|
| Ref | Expression |
|---|---|
| rgenm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 1425 |
. . . . 5
| |
| 2 | rgenm.1 |
. . . . . 6
| |
| 3 | 2 | ex 113 |
. . . . 5
|
| 4 | 1, 3 | alrimi 1455 |
. . . 4
|
| 5 | 19.38 1606 |
. . . 4
| |
| 6 | 4, 5 | ax-mp 7 |
. . 3
|
| 7 | pm5.4 247 |
. . . 4
| |
| 8 | 7 | albii 1399 |
. . 3
|
| 9 | 6, 8 | mpbi 143 |
. 2
|
| 10 | df-ral 2353 |
. 2
| |
| 11 | 9, 10 | mpbir 144 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |