| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbiedh | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1713). New proofs should use sbied 1711 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbiedh.1 |
|
| sbiedh.2 |
|
| sbiedh.3 |
|
| Ref | Expression |
|---|---|
| sbiedh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb1 1689 |
. . . 4
| |
| 2 | sbiedh.1 |
. . . . 5
| |
| 3 | sbiedh.3 |
. . . . . . 7
| |
| 4 | bi1 116 |
. . . . . . 7
| |
| 5 | 3, 4 | syl6 33 |
. . . . . 6
|
| 6 | 5 | impd 251 |
. . . . 5
|
| 7 | 2, 6 | eximdh 1542 |
. . . 4
|
| 8 | 1, 7 | syl5 32 |
. . 3
|
| 9 | sbiedh.2 |
. . . 4
| |
| 10 | 2, 9 | 19.9hd 1592 |
. . 3
|
| 11 | 8, 10 | syld 44 |
. 2
|
| 12 | bi2 128 |
. . . . . . 7
| |
| 13 | 3, 12 | syl6 33 |
. . . . . 6
|
| 14 | 13 | com23 77 |
. . . . 5
|
| 15 | 2, 14 | alimdh 1396 |
. . . 4
|
| 16 | sb2 1690 |
. . . 4
| |
| 17 | 15, 16 | syl6 33 |
. . 3
|
| 18 | 9, 17 | syld 44 |
. 2
|
| 19 | 11, 18 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: sbied 1711 sbieh 1713 sbcomxyyz 1887 |
| Copyright terms: Public domain | W3C validator |