ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5eqner Unicode version

Theorem syl5eqner 2276
Description: B chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
syl5eqner.1  |-  B  =  A
syl5eqner.2  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
syl5eqner  |-  ( ph  ->  A  =/=  C )

Proof of Theorem syl5eqner
StepHypRef Expression
1 syl5eqner.2 . 2  |-  ( ph  ->  B  =/=  C )
2 syl5eqner.1 . . 3  |-  B  =  A
32neeq1i 2260 . 2  |-  ( B  =/=  C  <->  A  =/=  C )
41, 3sylib 120 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    =/= wne 2245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-ne 2246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator