ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xchbinx Unicode version

Theorem xchbinx 639
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchbinx.1  |-  ( ph  <->  -. 
ps )
xchbinx.2  |-  ( ps  <->  ch )
Assertion
Ref Expression
xchbinx  |-  ( ph  <->  -. 
ch )

Proof of Theorem xchbinx
StepHypRef Expression
1 xchbinx.1 . 2  |-  ( ph  <->  -. 
ps )
2 xchbinx.2 . . 3  |-  ( ps  <->  ch )
32notbii 626 . 2  |-  ( -. 
ps 
<->  -.  ch )
41, 3bitri 182 1  |-  ( ph  <->  -. 
ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  xchbinxr  640  necon3abii  2281  elirr  4284  en2lp  4297  dm0rn0  4570
  Copyright terms: Public domain W3C validator