ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.19 GIF version

Theorem 19.19 1596
Description: Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.19.1 𝑥𝜑
Assertion
Ref Expression
19.19 (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))

Proof of Theorem 19.19
StepHypRef Expression
1 19.19.1 . . 3 𝑥𝜑
2119.9 1575 . 2 (∃𝑥𝜑𝜑)
3 exbi 1535 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
42, 3syl5bbr 192 1 (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282  wnf 1389  wex 1421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator