ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v GIF version

Theorem 19.23v 1804
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1459 . 2 (𝜓 → ∀𝑥𝜓)
2119.23h 1427 1 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282  wex 1421
This theorem was proved from axioms:  ax-mp 7  ax-gen 1378  ax-ie2 1423  ax-17 1459
This theorem is referenced by:  19.23vv  1805  2eu4  2034  gencbval  2647  euind  2779  reuind  2795  unissb  3631  dftr2  3877  ssrelrel  4458  cotr  4726  dffun2  4932  fununi  4987  dff13  5428  acexmidlem2  5529
  Copyright terms: Public domain W3C validator