| Step | Hyp | Ref
| Expression |
| 1 | | dff12 5111 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧)) |
| 2 | | ffn 5066 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 3 | | vex 2604 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 4 | | vex 2604 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
| 5 | 3, 4 | breldm 4557 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝐹𝑧 → 𝑥 ∈ dom 𝐹) |
| 6 | | fndm 5018 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| 7 | 6 | eleq2d 2148 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
| 8 | 5, 7 | syl5ib 152 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑧 → 𝑥 ∈ 𝐴)) |
| 9 | | vex 2604 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
| 10 | 9, 4 | breldm 4557 |
. . . . . . . . . . . . . 14
⊢ (𝑦𝐹𝑧 → 𝑦 ∈ dom 𝐹) |
| 11 | 6 | eleq2d 2148 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) |
| 12 | 10, 11 | syl5ib 152 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝐴 → (𝑦𝐹𝑧 → 𝑦 ∈ 𝐴)) |
| 13 | 8, 12 | anim12d 328 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) |
| 14 | 13 | pm4.71rd 386 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧)))) |
| 15 | | eqcom 2083 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑧) |
| 16 | | fnbrfvb 5235 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑧 ↔ 𝑥𝐹𝑧)) |
| 17 | 15, 16 | syl5bb 190 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑧 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑧)) |
| 18 | | eqcom 2083 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐹‘𝑦) ↔ (𝐹‘𝑦) = 𝑧) |
| 19 | | fnbrfvb 5235 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦) = 𝑧 ↔ 𝑦𝐹𝑧)) |
| 20 | 18, 19 | syl5bb 190 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑧 = (𝐹‘𝑦) ↔ 𝑦𝐹𝑧)) |
| 21 | 17, 20 | bi2anan9 570 |
. . . . . . . . . . . . 13
⊢ (((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹 Fn 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) ↔ (𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧))) |
| 22 | 21 | anandis 556 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) ↔ (𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧))) |
| 23 | 22 | pm5.32da 439 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐴 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦))) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧)))) |
| 24 | 14, 23 | bitr4d 189 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦))))) |
| 25 | 24 | imbi1d 229 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦))) → 𝑥 = 𝑦))) |
| 26 | | impexp 259 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦))) → 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦))) |
| 27 | 25, 26 | syl6bb 194 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦)))) |
| 28 | 27 | albidv 1745 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦)))) |
| 29 | | 19.21v 1794 |
. . . . . . . 8
⊢
(∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ∀𝑧((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦))) |
| 30 | | funfvex 5212 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) |
| 31 | 30 | funfni 5019 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
| 32 | | eqvincg 2719 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) ∈ V → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ∃𝑧(𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)))) |
| 33 | 31, 32 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ∃𝑧(𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)))) |
| 34 | 33 | imbi1d 229 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦))) |
| 35 | | 19.23v 1804 |
. . . . . . . . . . 11
⊢
(∀𝑧((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦)) |
| 36 | 34, 35 | syl6rbbr 197 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑧((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 37 | 36 | adantrr 462 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (∀𝑧((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 38 | 37 | pm5.74da 431 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐴 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ∀𝑧((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))) |
| 39 | 29, 38 | syl5bb 190 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → (∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑧 = (𝐹‘𝑥) ∧ 𝑧 = (𝐹‘𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))) |
| 40 | 28, 39 | bitrd 186 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))) |
| 41 | 40 | 2albidv 1788 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)))) |
| 42 | | breq1 3788 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥𝐹𝑧 ↔ 𝑦𝐹𝑧)) |
| 43 | 42 | mo4 2002 |
. . . . . . 7
⊢
(∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥∀𝑦((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦)) |
| 44 | 43 | albii 1399 |
. . . . . 6
⊢
(∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑧∀𝑥∀𝑦((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦)) |
| 45 | | alrot3 1414 |
. . . . . 6
⊢
(∀𝑧∀𝑥∀𝑦((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦)) |
| 46 | 44, 45 | bitri 182 |
. . . . 5
⊢
(∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑧 ∧ 𝑦𝐹𝑧) → 𝑥 = 𝑦)) |
| 47 | | r2al 2385 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 48 | 41, 46, 47 | 3bitr4g 221 |
. . . 4
⊢ (𝐹 Fn 𝐴 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 49 | 2, 48 | syl 14 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 50 | 49 | pm5.32i 441 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 51 | 1, 50 | bitri 182 |
1
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |