| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.32r | GIF version | ||
| Description: One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1609. (Contributed by Jim Kingdon, 28-Jul-2018.) |
| Ref | Expression |
|---|---|
| 19.32r.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.32r | ⊢ ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.32r.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | orc 665 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | alrimi 1455 | . 2 ⊢ (𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 4 | olc 664 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 5 | 4 | alimi 1384 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 6 | 3, 5 | jaoi 668 | 1 ⊢ ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-gen 1378 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: 19.31r 1611 |
| Copyright terms: Public domain | W3C validator |