| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.33 | GIF version | ||
| Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.33 | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 665 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | 1 | alimi 1384 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 3 | olc 664 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 4 | 3 | alimi 1384 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) |
| 5 | 2, 4 | jaoi 668 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: 19.33b2 1560 |
| Copyright terms: Public domain | W3C validator |