| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrot3 | GIF version | ||
| Description: Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| alrot3 | ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 1407 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑥∀𝑧𝜑) | |
| 2 | alcom 1407 | . . 3 ⊢ (∀𝑥∀𝑧𝜑 ↔ ∀𝑧∀𝑥𝜑) | |
| 3 | 2 | albii 1399 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) |
| 4 | 1, 3 | bitri 182 | 1 ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: alrot4 1415 raliunxp 4495 dff13 5428 |
| Copyright terms: Public domain | W3C validator |