| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.36i | GIF version | ||
| Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| 19.36i.1 | ⊢ Ⅎ𝑥𝜓 |
| 19.36i.2 | ⊢ ∃𝑥(𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.36i | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.36i.2 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) | |
| 2 | 1 | 19.35i 1556 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| 3 | 19.36i.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | id 19 | . . 3 ⊢ (𝜓 → 𝜓) | |
| 5 | 3, 4 | exlimi 1525 | . 2 ⊢ (∃𝑥𝜓 → 𝜓) |
| 6 | 2, 5 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 ∃wex 1421 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: 19.36aiv 1822 vtoclf 2652 |
| Copyright terms: Public domain | W3C validator |