| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2moex | GIF version | ||
| Description: Double quantification with "at most one." (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| 2moex | ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1424 | . . 3 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
| 2 | 1 | hbmo 1980 | . 2 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥∃𝑦𝜑) |
| 3 | 19.8a 1522 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 4 | 3 | moimi 2006 | . 2 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
| 5 | 2, 4 | alrimih 1398 | 1 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ∃wex 1421 ∃*wmo 1942 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 |
| This theorem is referenced by: 2rmorex 2796 |
| Copyright terms: Public domain | W3C validator |