| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anrev | GIF version | ||
| Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anrev | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 926 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3anrot 924 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 3 | 1, 2 | bitr4i 185 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: 3com13 1143 nnmcan 6115 |
| Copyright terms: Public domain | W3C validator |