ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anrot GIF version

Theorem 3anrot 924
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3anrot ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))

Proof of Theorem 3anrot
StepHypRef Expression
1 ancom 262 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜓𝜒) ∧ 𝜑))
2 3anass 923 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
3 df-3an 921 . 2 ((𝜓𝜒𝜑) ↔ ((𝜓𝜒) ∧ 𝜑))
41, 2, 33bitr4i 210 1 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  w3a 919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 921
This theorem is referenced by:  3ancomb  927  3anrev  929  3simpc  937  caovlem2d  5713  nnmcan  6115  modmulconst  10227
  Copyright terms: Public domain W3C validator