| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4i | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4.1 | ⊢ 𝐴 ∈ 𝐵 |
| 3eltr4.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eltr4.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 3eltr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | eleqtrri 2154 | . 2 ⊢ 𝐴 ∈ 𝐷 |
| 5 | 1, 4 | eqeltri 2151 | 1 ⊢ 𝐶 ∈ 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∈ wcel 1433 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: 1nq 6556 0r 6927 1sr 6928 m1r 6929 |
| Copyright terms: Public domain | W3C validator |