| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jcad | GIF version | ||
| Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 122 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 122 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 122 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
| 7 | 2, 4, 6 | 3jca 1118 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 8 | 7 | ex 113 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: ixxssixx 8925 iccid 8948 fzen 9062 |
| Copyright terms: Public domain | W3C validator |