| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jcad | Unicode version | ||
| Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3jcad.1 |
|
| 3jcad.2 |
|
| 3jcad.3 |
|
| Ref | Expression |
|---|---|
| 3jcad |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jcad.1 |
. . . 4
| |
| 2 | 1 | imp 122 |
. . 3
|
| 3 | 3jcad.2 |
. . . 4
| |
| 4 | 3 | imp 122 |
. . 3
|
| 5 | 3jcad.3 |
. . . 4
| |
| 6 | 5 | imp 122 |
. . 3
|
| 7 | 2, 4, 6 | 3jca 1118 |
. 2
|
| 8 | 7 | ex 113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: ixxssixx 8925 iccid 8948 fzen 9062 |
| Copyright terms: Public domain | W3C validator |