ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3reeanv GIF version

Theorem 3reeanv 2524
Description: Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
Assertion
Ref Expression
3reeanv (∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒))
Distinct variable groups:   𝜑,𝑦,𝑧   𝜓,𝑥,𝑧   𝜒,𝑥,𝑦   𝑦,𝐴   𝑥,𝐵,𝑧   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑧)   𝐴(𝑥,𝑧)   𝐵(𝑦)   𝐶(𝑧)

Proof of Theorem 3reeanv
StepHypRef Expression
1 r19.41v 2510 . . 3 (∃𝑥𝐴 (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒) ↔ (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒))
2 reeanv 2523 . . . 4 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
32anbi1i 445 . . 3 ((∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒) ↔ ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓) ∧ ∃𝑧𝐶 𝜒))
41, 3bitri 182 . 2 (∃𝑥𝐴 (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒) ↔ ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓) ∧ ∃𝑧𝐶 𝜒))
5 df-3an 921 . . . . 5 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
652rexbii 2375 . . . 4 (∃𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ ∃𝑦𝐵𝑧𝐶 ((𝜑𝜓) ∧ 𝜒))
7 reeanv 2523 . . . 4 (∃𝑦𝐵𝑧𝐶 ((𝜑𝜓) ∧ 𝜒) ↔ (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒))
86, 7bitri 182 . . 3 (∃𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒))
98rexbii 2373 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ ∃𝑥𝐴 (∃𝑦𝐵 (𝜑𝜓) ∧ ∃𝑧𝐶 𝜒))
10 df-3an 921 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒) ↔ ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓) ∧ ∃𝑧𝐶 𝜒))
114, 9, 103bitr4i 210 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  w3a 919  wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator