ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr3i GIF version

Theorem 3sstr3i 3037
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr3.1 𝐴𝐵
3sstr3.2 𝐴 = 𝐶
3sstr3.3 𝐵 = 𝐷
Assertion
Ref Expression
3sstr3i 𝐶𝐷

Proof of Theorem 3sstr3i
StepHypRef Expression
1 3sstr3.1 . 2 𝐴𝐵
2 3sstr3.2 . . 3 𝐴 = 𝐶
3 3sstr3.3 . . 3 𝐵 = 𝐷
42, 3sseq12i 3025 . 2 (𝐴𝐵𝐶𝐷)
51, 4mpbi 143 1 𝐶𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator