ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a16gb GIF version

Theorem a16gb 1786
Description: A generalization of axiom ax-16 1735. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
a16gb (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem a16gb
StepHypRef Expression
1 a16g 1785 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
2 ax-4 1440 . 2 (∀𝑧𝜑𝜑)
31, 2impbid1 140 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator