ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi2dv GIF version

Theorem abbi2dv 2197
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
abbirdv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
abbi2dv (𝜑𝐴 = {𝑥𝜓})
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abbi2dv
StepHypRef Expression
1 abbirdv.1 . . 3 (𝜑 → (𝑥𝐴𝜓))
21alrimiv 1795 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝜓))
3 abeq2 2187 . 2 (𝐴 = {𝑥𝜓} ↔ ∀𝑥(𝑥𝐴𝜓))
42, 3sylibr 132 1 (𝜑𝐴 = {𝑥𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284  wcel 1433  {cab 2067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077
This theorem is referenced by:  sbab  2205  iftrue  3356  iffalse  3359  iniseg  4717  fncnvima2  5309  isoini  5477  dftpos3  5900
  Copyright terms: Public domain W3C validator