ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbid GIF version

Theorem abbid 2195
Description: Equivalent wff's yield equal class abstractions (deduction rule). (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
abbid.1 𝑥𝜑
abbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
abbid (𝜑 → {𝑥𝜓} = {𝑥𝜒})

Proof of Theorem abbid
StepHypRef Expression
1 abbid.1 . . 3 𝑥𝜑
2 abbid.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimi 1455 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 abbi 2192 . 2 (∀𝑥(𝜓𝜒) ↔ {𝑥𝜓} = {𝑥𝜒})
53, 4sylib 120 1 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284  wnf 1389  {cab 2067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074
This theorem is referenced by:  abbidv  2196  rabeqf  2594  sbcbid  2871
  Copyright terms: Public domain W3C validator