| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad5antr | GIF version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ad4antr 477 | . 2 ⊢ (((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| 3 | 2 | adantr 270 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem is referenced by: ad6antr 481 cauappcvgprlemladdfu 6844 caucvgprlemloc 6865 caucvgprlemladdfu 6867 caucvgprlemlim 6871 caucvgprprlemml 6884 caucvgprprlemloc 6893 caucvgprprlemlim 6901 axcaucvglemres 7065 resqrexlemglsq 9908 divalglemeuneg 10323 bezoutlemnewy 10385 |
| Copyright terms: Public domain | W3C validator |