ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemml GIF version

Theorem caucvgprprlemml 6884
Description: Lemma for caucvgprpr 6902. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemml (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐴,𝑠,𝑟   𝐹,𝑙   𝑝,𝑙,𝑞,𝑟,𝑠   𝑢,𝑙   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemml
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1pi 6505 . . . . 5 1𝑜N
2 caucvgprpr.bnd . . . . 5 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
3 fveq2 5198 . . . . . . 7 (𝑚 = 1𝑜 → (𝐹𝑚) = (𝐹‘1𝑜))
43breq2d 3797 . . . . . 6 (𝑚 = 1𝑜 → (𝐴<P (𝐹𝑚) ↔ 𝐴<P (𝐹‘1𝑜)))
54rspcv 2697 . . . . 5 (1𝑜N → (∀𝑚N 𝐴<P (𝐹𝑚) → 𝐴<P (𝐹‘1𝑜)))
61, 2, 5mpsyl 64 . . . 4 (𝜑𝐴<P (𝐹‘1𝑜))
7 ltrelpr 6695 . . . . . 6 <P ⊆ (P × P)
87brel 4410 . . . . 5 (𝐴<P (𝐹‘1𝑜) → (𝐴P ∧ (𝐹‘1𝑜) ∈ P))
98simpld 110 . . . 4 (𝐴<P (𝐹‘1𝑜) → 𝐴P)
106, 9syl 14 . . 3 (𝜑𝐴P)
11 prop 6665 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 prml 6667 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
1311, 12syl 14 . . 3 (𝐴P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
1410, 13syl 14 . 2 (𝜑 → ∃𝑥Q 𝑥 ∈ (1st𝐴))
15 subhalfnqq 6604 . . . 4 (𝑥Q → ∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥)
1615ad2antrl 473 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥)
17 simplr 496 . . . . . 6 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → 𝑠Q)
18 archrecnq 6853 . . . . . . . 8 (𝑠Q → ∃𝑟N (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠)
1917, 18syl 14 . . . . . . 7 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → ∃𝑟N (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠)
20 simpr 108 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠)
21 simplr 496 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝑟N)
22 nnnq 6612 . . . . . . . . . . . . . . . 16 (𝑟N → [⟨𝑟, 1𝑜⟩] ~QQ)
23 recclnq 6582 . . . . . . . . . . . . . . . 16 ([⟨𝑟, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) ∈ Q)
2421, 22, 233syl 17 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) ∈ Q)
2517ad2antrr 471 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝑠Q)
26 ltanqg 6590 . . . . . . . . . . . . . . 15 (((*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2724, 25, 25, 26syl3anc 1169 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2820, 27mpbid 145 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠))
29 simpllr 500 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) <Q 𝑥)
30 ltsonq 6588 . . . . . . . . . . . . . 14 <Q Or Q
31 ltrelnq 6555 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
3230, 31sotri 4740 . . . . . . . . . . . . 13 (((𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑥)
3328, 29, 32syl2anc 403 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑥)
3410ad5antr 479 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝐴P)
35 simprr 498 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → 𝑥 ∈ (1st𝐴))
3635ad4antr 477 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝑥 ∈ (1st𝐴))
37 prcdnql 6674 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → ((𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ (1st𝐴)))
3811, 37sylan 277 . . . . . . . . . . . . 13 ((𝐴P𝑥 ∈ (1st𝐴)) → ((𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ (1st𝐴)))
3934, 36, 38syl2anc 403 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → ((𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑥 → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ (1st𝐴)))
4033, 39mpd 13 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ (1st𝐴))
41 addclnq 6565 . . . . . . . . . . . . 13 ((𝑠Q ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ Q)
4225, 24, 41syl2anc 403 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ Q)
43 nqprl 6741 . . . . . . . . . . . 12 (((𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ Q𝐴P) → ((𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ (1st𝐴) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P 𝐴))
4442, 34, 43syl2anc 403 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → ((𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ∈ (1st𝐴) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P 𝐴))
4540, 44mpbid 145 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P 𝐴)
462ad5antr 479 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → ∀𝑚N 𝐴<P (𝐹𝑚))
47 fveq2 5198 . . . . . . . . . . . . 13 (𝑚 = 𝑟 → (𝐹𝑚) = (𝐹𝑟))
4847breq2d 3797 . . . . . . . . . . . 12 (𝑚 = 𝑟 → (𝐴<P (𝐹𝑚) ↔ 𝐴<P (𝐹𝑟)))
4948rspcv 2697 . . . . . . . . . . 11 (𝑟N → (∀𝑚N 𝐴<P (𝐹𝑚) → 𝐴<P (𝐹𝑟)))
5021, 46, 49sylc 61 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝐴<P (𝐹𝑟))
51 ltsopr 6786 . . . . . . . . . . 11 <P Or P
5251, 7sotri 4740 . . . . . . . . . 10 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P 𝐴𝐴<P (𝐹𝑟)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
5345, 50, 52syl2anc 403 . . . . . . . . 9 ((((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) ∧ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
5453ex 113 . . . . . . . 8 (((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) ∧ 𝑟N) → ((*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
5554reximdva 2463 . . . . . . 7 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → (∃𝑟N (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑠 → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
5619, 55mpd 13 . . . . . 6 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟))
57 oveq1 5539 . . . . . . . . . . . 12 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )))
5857breq2d 3797 . . . . . . . . . . 11 (𝑙 = 𝑠 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))))
5958abbidv 2196 . . . . . . . . . 10 (𝑙 = 𝑠 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))})
6057breq1d 3795 . . . . . . . . . . 11 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞))
6160abbidv 2196 . . . . . . . . . 10 (𝑙 = 𝑠 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞})
6259, 61opeq12d 3578 . . . . . . . . 9 (𝑙 = 𝑠 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
6362breq1d 3795 . . . . . . . 8 (𝑙 = 𝑠 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
6463rexbidv 2369 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
65 caucvgprpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6665fveq2i 5201 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
67 nqex 6553 . . . . . . . . . 10 Q ∈ V
6867rabex 3922 . . . . . . . . 9 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
6967rabex 3922 . . . . . . . . 9 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
7068, 69op1st 5793 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
7166, 70eqtri 2101 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
7264, 71elrab2 2751 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
7317, 56, 72sylanbrc 408 . . . . 5 ((((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) ∧ (𝑠 +Q 𝑠) <Q 𝑥) → 𝑠 ∈ (1st𝐿))
7473ex 113 . . . 4 (((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑠Q) → ((𝑠 +Q 𝑠) <Q 𝑥𝑠 ∈ (1st𝐿)))
7574reximdva 2463 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → (∃𝑠Q (𝑠 +Q 𝑠) <Q 𝑥 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
7616, 75mpd 13 . 2 ((𝜑 ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑠Q 𝑠 ∈ (1st𝐿))
7714, 76rexlimddv 2481 1 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  {cab 2067  wral 2348  wrex 2349  {crab 2352  cop 3401   class class class wbr 3785  wf 4918  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   <N clti 6465   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472  *Qcrq 6474   <Q cltq 6475  Pcnp 6481   +P cpp 6483  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  caucvgprprlemm  6886
  Copyright terms: Public domain W3C validator