| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomi | GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcomi | ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcom 7245 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 416 | 1 ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 + caddc 6984 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 ax-addcom 7076 |
| This theorem is referenced by: addcomli 7253 add42i 7274 mvlladdi 7326 3m1e2 8158 fztpval 9100 fzo0to42pr 9229 |
| Copyright terms: Public domain | W3C validator |