![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzo0to42pr | GIF version |
Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
Ref | Expression |
---|---|
fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 8305 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 8307 | . . . 4 ⊢ 4 ∈ ℕ0 | |
3 | 2re 8109 | . . . . 5 ⊢ 2 ∈ ℝ | |
4 | 4re 8116 | . . . . 5 ⊢ 4 ∈ ℝ | |
5 | 2lt4 8205 | . . . . 5 ⊢ 2 < 4 | |
6 | 3, 4, 5 | ltleii 7213 | . . . 4 ⊢ 2 ≤ 4 |
7 | elfz2nn0 9128 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
8 | 1, 2, 6, 7 | mpbir3an 1120 | . . 3 ⊢ 2 ∈ (0...4) |
9 | fzosplit 9186 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
10 | 8, 9 | ax-mp 7 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
11 | fzo0to2pr 9227 | . . 3 ⊢ (0..^2) = {0, 1} | |
12 | 4z 8381 | . . . . 5 ⊢ 4 ∈ ℤ | |
13 | fzoval 9158 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
14 | 12, 13 | ax-mp 7 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
15 | 4cn 8117 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
16 | ax-1cn 7069 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
17 | 3cn 8114 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
18 | df-4 8100 | . . . . . . . . . 10 ⊢ 4 = (3 + 1) | |
19 | 17, 16 | addcomi 7252 | . . . . . . . . . 10 ⊢ (3 + 1) = (1 + 3) |
20 | 18, 19 | eqtri 2101 | . . . . . . . . 9 ⊢ 4 = (1 + 3) |
21 | 20 | eqcomi 2085 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
22 | 15, 16, 17, 21 | subaddrii 7397 | . . . . . . 7 ⊢ (4 − 1) = 3 |
23 | df-3 8099 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
24 | 22, 23 | eqtri 2101 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
25 | 24 | oveq2i 5543 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
26 | 2z 8379 | . . . . . 6 ⊢ 2 ∈ ℤ | |
27 | fzpr 9094 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
28 | 26, 27 | ax-mp 7 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
29 | 25, 28 | eqtri 2101 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
30 | 23 | eqcomi 2085 | . . . . 5 ⊢ (2 + 1) = 3 |
31 | 30 | preq2i 3473 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
32 | 14, 29, 31 | 3eqtri 2105 | . . 3 ⊢ (2..^4) = {2, 3} |
33 | 11, 32 | uneq12i 3124 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
34 | 10, 33 | eqtri 2101 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 ∪ cun 2971 {cpr 3399 class class class wbr 3785 (class class class)co 5532 0cc0 6981 1c1 6982 + caddc 6984 ≤ cle 7154 − cmin 7279 2c2 8089 3c3 8090 4c4 8091 ℕ0cn0 8288 ℤcz 8351 ...cfz 9029 ..^cfzo 9152 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 df-fzo 9153 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |