| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddi | GIF version | ||
| Description: Alias for ax-distr 7080, for naming consistency with adddii 7129. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 7080 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 + caddc 6984 · cmul 6986 |
| This theorem was proved from axioms: ax-distr 7080 |
| This theorem is referenced by: adddir 7110 adddii 7129 adddid 7143 muladd11 7241 cnegex 7286 muladd 7488 nnmulcl 8060 expmul 9521 bernneq 9593 sqoddm1div8 9625 iisermulc2 10178 odd2np1 10272 opoe 10295 opeo 10297 gcdmultiple 10409 |
| Copyright terms: Public domain | W3C validator |