| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addid1 | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| addid1 | ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0id 7084 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 0cc0 6981 + caddc 6984 |
| This theorem was proved from axioms: ax-0id 7084 |
| This theorem is referenced by: addid2 7247 00id 7249 addid1i 7250 addid1d 7257 addcan2 7289 subid 7327 subid1 7328 addid0 7477 shftval3 9715 reim0 9748 |
| Copyright terms: Public domain | W3C validator |