| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addid1i | GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addid1i | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addid1 7246 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 0cc0 6981 + caddc 6984 |
| This theorem was proved from axioms: ax-mp 7 ax-0id 7084 |
| This theorem is referenced by: 1p0e1 8154 9p1e10 8479 num0u 8487 numnncl2 8499 decrmanc 8533 decaddi 8536 decaddci 8537 decmul1 8540 decmulnc 8543 |
| Copyright terms: Public domain | W3C validator |