| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimdv | GIF version | ||
| Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1459 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1459 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | alrimdh 1408 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-5 1376 ax-gen 1378 ax-17 1459 |
| This theorem is referenced by: funcnvuni 4988 fliftfun 5456 findcard 6372 findcard2 6373 findcard2s 6374 genprndl 6711 genprndu 6712 bj-inf2vnlem2 10766 |
| Copyright terms: Public domain | W3C validator |