ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genprndl GIF version

Theorem genprndl 6711
Description: The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genprndl.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genprndl.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
genprndl.lower ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))
Assertion
Ref Expression
genprndl ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞   𝑔,𝐹,𝑞   𝐴,𝑟,𝑞,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑟,𝑔,   ,𝐹,𝑟,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑟

Proof of Theorem genprndl
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . . 10 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelvl 6702 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏)))
4 r2ex 2386 . . . . . . . . 9 (∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
53, 4syl6bb 194 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))))
65biimpa 290 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))) → ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
76adantrl 461 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
8 prop 6665 . . . . . . . . . . . . . . . 16 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
9 prnmaxl 6678 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑎 ∈ (1st𝐴)) → ∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐)
108, 9sylan 277 . . . . . . . . . . . . . . 15 ((𝐴P𝑎 ∈ (1st𝐴)) → ∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐)
11 prop 6665 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
12 prnmaxl 6678 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑏 ∈ (1st𝐵)) → ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑)
1311, 12sylan 277 . . . . . . . . . . . . . . 15 ((𝐵P𝑏 ∈ (1st𝐵)) → ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑)
1410, 13anim12i 331 . . . . . . . . . . . . . 14 (((𝐴P𝑎 ∈ (1st𝐴)) ∧ (𝐵P𝑏 ∈ (1st𝐵))) → (∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑))
1514an4s 552 . . . . . . . . . . . . 13 (((𝐴P𝐵P) ∧ (𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵))) → (∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑))
16 reeanv 2523 . . . . . . . . . . . . 13 (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎 <Q 𝑐𝑏 <Q 𝑑) ↔ (∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑))
1715, 16sylibr 132 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ (𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎 <Q 𝑐𝑏 <Q 𝑑))
18 genprndl.ord . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
19 genprndl.com . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
2018, 19genplt2i 6700 . . . . . . . . . . . . . 14 ((𝑎 <Q 𝑐𝑏 <Q 𝑑) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2120reximi 2458 . . . . . . . . . . . . 13 (∃𝑑 ∈ (1st𝐵)(𝑎 <Q 𝑐𝑏 <Q 𝑑) → ∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2221reximi 2458 . . . . . . . . . . . 12 (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎 <Q 𝑐𝑏 <Q 𝑑) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2317, 22syl 14 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2423adantrr 462 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
25 breq1 3788 . . . . . . . . . . . . . 14 (𝑞 = (𝑎𝐺𝑏) → (𝑞 <Q (𝑐𝐺𝑑) ↔ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2625biimprd 156 . . . . . . . . . . . . 13 (𝑞 = (𝑎𝐺𝑏) → ((𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → 𝑞 <Q (𝑐𝐺𝑑)))
2726reximdv 2462 . . . . . . . . . . . 12 (𝑞 = (𝑎𝐺𝑏) → (∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
2827reximdv 2462 . . . . . . . . . . 11 (𝑞 = (𝑎𝐺𝑏) → (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
2928ad2antll 474 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) → (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
3024, 29mpd 13 . . . . . . . . 9 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑))
3130ex 113 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
3231exlimdvv 1818 . . . . . . 7 ((𝐴P𝐵P) → (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
3332adantr 270 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
347, 33mpd 13 . . . . 5 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑))
351, 2genpprecll 6704 . . . . . . . . 9 ((𝐴P𝐵P) → ((𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵)) → (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))))
3635imp 122 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵)))
37 elprnql 6671 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑐 ∈ (1st𝐴)) → 𝑐Q)
388, 37sylan 277 . . . . . . . . . . . 12 ((𝐴P𝑐 ∈ (1st𝐴)) → 𝑐Q)
39 elprnql 6671 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑑 ∈ (1st𝐵)) → 𝑑Q)
4011, 39sylan 277 . . . . . . . . . . . 12 ((𝐵P𝑑 ∈ (1st𝐵)) → 𝑑Q)
4138, 40anim12i 331 . . . . . . . . . . 11 (((𝐴P𝑐 ∈ (1st𝐴)) ∧ (𝐵P𝑑 ∈ (1st𝐵))) → (𝑐Q𝑑Q))
4241an4s 552 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → (𝑐Q𝑑Q))
432caovcl 5675 . . . . . . . . . 10 ((𝑐Q𝑑Q) → (𝑐𝐺𝑑) ∈ Q)
4442, 43syl 14 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → (𝑐𝐺𝑑) ∈ Q)
45 breq2 3789 . . . . . . . . . . 11 (𝑟 = (𝑐𝐺𝑑) → (𝑞 <Q 𝑟𝑞 <Q (𝑐𝐺𝑑)))
46 eleq1 2141 . . . . . . . . . . 11 (𝑟 = (𝑐𝐺𝑑) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))))
4745, 46anbi12d 456 . . . . . . . . . 10 (𝑟 = (𝑐𝐺𝑑) → ((𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵)))))
4847adantl 271 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) ∧ 𝑟 = (𝑐𝐺𝑑)) → ((𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵)))))
4944, 48rspcedv 2705 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → ((𝑞 <Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
5036, 49mpan2d 418 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → (𝑞 <Q (𝑐𝐺𝑑) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
5150rexlimdvva 2484 . . . . . 6 ((𝐴P𝐵P) → (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
5251adantr 270 . . . . 5 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
5334, 52mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))
5453expr 367 . . 3 (((𝐴P𝐵P) ∧ 𝑞Q) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
55 genprndl.lower . . . . . . . . . . 11 ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))
561, 2, 55genpcdl 6709 . . . . . . . . . 10 ((𝐴P𝐵P) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑟𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
5756alrimdv 1797 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) → ∀𝑥(𝑥 <Q 𝑟𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
58 breq1 3788 . . . . . . . . . . 11 (𝑥 = 𝑞 → (𝑥 <Q 𝑟𝑞 <Q 𝑟))
59 eleq1 2141 . . . . . . . . . . 11 (𝑥 = 𝑞 → (𝑥 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6058, 59imbi12d 232 . . . . . . . . . 10 (𝑥 = 𝑞 → ((𝑥 <Q 𝑟𝑥 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))))
6160cbvalv 1835 . . . . . . . . 9 (∀𝑥(𝑥 <Q 𝑟𝑥 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ ∀𝑞(𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6257, 61syl6ib 159 . . . . . . . 8 ((𝐴P𝐵P) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) → ∀𝑞(𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))))
63 sp 1441 . . . . . . . 8 (∀𝑞(𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵))) → (𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6462, 63syl6 33 . . . . . . 7 ((𝐴P𝐵P) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))))
6564impd 251 . . . . . 6 ((𝐴P𝐵P) → ((𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 <Q 𝑟) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6665ancomsd 265 . . . . 5 ((𝐴P𝐵P) → ((𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6766ad2antrr 471 . . . 4 ((((𝐴P𝐵P) ∧ 𝑞Q) ∧ 𝑟Q) → ((𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6867rexlimdva 2477 . . 3 (((𝐴P𝐵P) ∧ 𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6954, 68impbid 127 . 2 (((𝐴P𝐵P) ∧ 𝑞Q) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
7069ralrimiva 2434 1 ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wal 1282   = wceq 1284  wex 1421  wcel 1433  wral 2348  wrex 2349  {crab 2352  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  cmpt2 5534  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   <Q cltq 6475  Pcnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-ltnqqs 6543  df-inp 6656
This theorem is referenced by:  addclpr  6727  mulclpr  6762
  Copyright terms: Public domain W3C validator