ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alrot4 GIF version

Theorem alrot4 1415
Description: Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 28-Jun-2014.)
Assertion
Ref Expression
alrot4 (∀𝑥𝑦𝑧𝑤𝜑 ↔ ∀𝑧𝑤𝑥𝑦𝜑)

Proof of Theorem alrot4
StepHypRef Expression
1 alrot3 1414 . . 3 (∀𝑦𝑧𝑤𝜑 ↔ ∀𝑧𝑤𝑦𝜑)
21albii 1399 . 2 (∀𝑥𝑦𝑧𝑤𝜑 ↔ ∀𝑥𝑧𝑤𝑦𝜑)
3 alcom 1407 . 2 (∀𝑥𝑧𝑤𝑦𝜑 ↔ ∀𝑧𝑥𝑤𝑦𝜑)
4 alcom 1407 . . 3 (∀𝑥𝑤𝑦𝜑 ↔ ∀𝑤𝑥𝑦𝜑)
54albii 1399 . 2 (∀𝑧𝑥𝑤𝑦𝜑 ↔ ∀𝑧𝑤𝑥𝑦𝜑)
62, 3, 53bitri 204 1 (∀𝑥𝑦𝑧𝑤𝜑 ↔ ∀𝑧𝑤𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wb 103  wal 1282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  fun11  4986
  Copyright terms: Public domain W3C validator