| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrot4 | GIF version | ||
| Description: Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| alrot4 | ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrot3 1414 | . . 3 ⊢ (∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑦𝜑) | |
| 2 | 1 | albii 1399 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑥∀𝑧∀𝑤∀𝑦𝜑) |
| 3 | alcom 1407 | . 2 ⊢ (∀𝑥∀𝑧∀𝑤∀𝑦𝜑 ↔ ∀𝑧∀𝑥∀𝑤∀𝑦𝜑) | |
| 4 | alcom 1407 | . . 3 ⊢ (∀𝑥∀𝑤∀𝑦𝜑 ↔ ∀𝑤∀𝑥∀𝑦𝜑) | |
| 5 | 4 | albii 1399 | . 2 ⊢ (∀𝑧∀𝑥∀𝑤∀𝑦𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
| 6 | 2, 3, 5 | 3bitri 204 | 1 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: fun11 4986 |
| Copyright terms: Public domain | W3C validator |