| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi2ci | GIF version | ||
| Description: Variant of anbi2i 444 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| bi.aa | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| anbi2ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | anbi1i 445 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
| 3 | ancom 262 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | |
| 4 | 2, 3 | bitri 182 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: clabel 2204 ordpwsucss 4310 asymref 4730 supmoti 6406 |
| Copyright terms: Public domain | W3C validator |