![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi2i | GIF version |
Description: Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi2i | ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.32i 441 | 1 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: anbi12i 447 mpan10 457 an4 550 an42 551 anandir 555 dcim 817 19.27h 1492 19.27 1493 19.41 1616 sbcof2 1731 sbidm 1772 sb6 1807 3exdistr 1833 4exdistr 1834 2sb5 1900 2sb5rf 1906 sbel2x 1915 eu2 1985 euan 1997 sbmo 2000 mo4f 2001 eu4 2003 moanim 2015 2eu4 2034 clelab 2203 nonconne 2257 r2exf 2384 ceqsex3v 2641 ceqsex4v 2642 ceqsex8v 2644 reu2 2780 reu6 2781 reu4 2786 reu7 2787 2rmorex 2796 rmo3 2905 raldifb 3112 inass 3176 ssddif 3198 difin 3201 invdif 3206 indif 3207 indi 3211 difundi 3216 difindiss 3218 inssdif0im 3311 unipr 3615 uniun 3620 uniin 3621 iunin2 3741 iindif2m 3745 iinin2m 3746 unidif0 3941 mss 3981 eqvinop 3998 opcom 4005 opeqsn 4007 uniuni 4201 zfinf2 4330 elnn 4346 fconstmpt 4405 opeliunxp 4413 xpundi 4414 elvvv 4421 xpiindim 4491 elcnv2 4531 cnvuni 4539 dmuni 4563 opelres 4635 elima3 4695 imai 4701 imainss 4759 ssrnres 4783 cnvresima 4830 mptpreima 4834 coundir 4843 rnco 4847 coass 4859 relrelss 4864 dffun2 4932 dffun4 4933 dffun6f 4935 dffun4f 4938 dffun7 4948 dffun8 4949 dffun9 4950 svrelfun 4984 fncnv 4985 funcnvuni 4988 dfmpt3 5041 fintm 5095 fin 5096 dff12 5111 fores 5135 dff1o4 5154 eqfnfv3 5288 unpreima 5313 ffnfvf 5345 dff13f 5430 ffnov 5625 eqfnov 5627 foov 5667 opabex3d 5768 opabex3 5769 mpt2xopovel 5879 tpostpos 5902 dfsmo2 5925 erinxp 6203 xpassen 6327 distrnqg 6577 subhalfnqq 6604 enq0enq 6621 enq0sym 6622 enq0tr 6624 addnq0mo 6637 mulnq0mo 6638 distrnq0 6649 prarloc 6693 nqprrnd 6733 ltexprlemopl 6791 ltexprlemlol 6792 ltexprlemopu 6793 ltexprlemupu 6794 ltexprlemdisj 6796 ltexprlemloc 6797 recexprlemdisj 6820 caucvgprprlemell 6875 caucvgprprlemelu 6876 addsrmo 6920 mulsrmo 6921 opelreal 6996 axcaucvglemres 7065 elnnz 8361 elznn0nn 8365 zltlen 8426 suprzclex 8445 peano2uz2 8454 peano5uzti 8455 qltlen 8725 elfzuzb 9039 4fvwrd4 9150 fzind2 9248 cvg1nlemres 9871 rexfiuz 9875 ndvdssub 10330 isprm2 10499 isprm4 10501 |
Copyright terms: Public domain | W3C validator |