| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancri | GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jca 300 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 |
| This theorem is referenced by: bamalip 2062 gencbvex 2645 mosubt 2769 trsuc 4177 eusv2nf 4206 mosubopt 4423 issref 4727 fo00 5182 eqfnov2 5628 dfgcd2 10403 |
| Copyright terms: Public domain | W3C validator |