![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mosubt | GIF version |
Description: "At most one" remains true after substitution. (Contributed by Jim Kingdon, 18-Jan-2019.) |
Ref | Expression |
---|---|
mosubt | ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueq 2763 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ ∃!𝑦 𝑦 = 𝐴) | |
2 | isset 2605 | . . . . . 6 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
3 | 1, 2 | bitr3i 184 | . . . . 5 ⊢ (∃!𝑦 𝑦 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) |
4 | nfv 1461 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝐴 | |
5 | 4 | euexex 2026 | . . . . 5 ⊢ ((∃!𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
6 | 3, 5 | sylanbr 279 | . . . 4 ⊢ ((∃𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
7 | 6 | expcom 114 | . . 3 ⊢ (∀𝑦∃*𝑥𝜑 → (∃𝑦 𝑦 = 𝐴 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
8 | moanimv 2016 | . . 3 ⊢ (∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) ↔ (∃𝑦 𝑦 = 𝐴 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) | |
9 | 7, 8 | sylibr 132 | . 2 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
10 | simpl 107 | . . . . 5 ⊢ ((𝑦 = 𝐴 ∧ 𝜑) → 𝑦 = 𝐴) | |
11 | 10 | eximi 1531 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → ∃𝑦 𝑦 = 𝐴) |
12 | 11 | ancri 317 | . . 3 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝜑) → (∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑))) |
13 | 12 | moimi 2006 | . 2 ⊢ (∃*𝑥(∃𝑦 𝑦 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
14 | 9, 13 | syl 14 | 1 ⊢ (∀𝑦∃*𝑥𝜑 → ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 ∃wex 1421 ∈ wcel 1433 ∃!weu 1941 ∃*wmo 1942 Vcvv 2601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
This theorem is referenced by: mosub 2770 |
Copyright terms: Public domain | W3C validator |