| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim12ci | GIF version | ||
| Description: Variant of anim12i 331 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| anim12i.1 | ⊢ (𝜑 → 𝜓) |
| anim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| anim12ci | ⊢ ((𝜑 ∧ 𝜒) → (𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 2 | anim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | anim12i 331 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜃 ∧ 𝜓)) |
| 4 | 3 | ancoms 264 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜃 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem is referenced by: dfco2a 4841 funco 4960 fliftval 5460 ltsrprg 6924 difelfznle 9146 ex-ceil 10564 |
| Copyright terms: Public domain | W3C validator |