![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fliftval | GIF version |
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
fliftval.4 | ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐶) |
fliftval.5 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
fliftval.6 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
fliftval | ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐹‘𝐶) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fliftval.6 | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
2 | 1 | adantr 270 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → Fun 𝐹) |
3 | simpr 108 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) | |
4 | eqidd 2082 | . . . . 5 ⊢ (𝜑 → 𝐷 = 𝐷) | |
5 | eqidd 2082 | . . . . 5 ⊢ (𝑌 ∈ 𝑋 → 𝐶 = 𝐶) | |
6 | 4, 5 | anim12ci 332 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) |
7 | fliftval.4 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐶) | |
8 | 7 | eqeq2d 2092 | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐶)) |
9 | fliftval.5 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
10 | 9 | eqeq2d 2092 | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝐷 = 𝐵 ↔ 𝐷 = 𝐷)) |
11 | 8, 10 | anbi12d 456 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝐶 = 𝐴 ∧ 𝐷 = 𝐵) ↔ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷))) |
12 | 11 | rspcev 2701 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
13 | 3, 6, 12 | syl2anc 403 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
14 | flift.1 | . . . . 5 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
15 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
16 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
17 | 14, 15, 16 | fliftel 5453 | . . . 4 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
18 | 17 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
19 | 13, 18 | mpbird 165 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → 𝐶𝐹𝐷) |
20 | funbrfv 5233 | . 2 ⊢ (Fun 𝐹 → (𝐶𝐹𝐷 → (𝐹‘𝐶) = 𝐷)) | |
21 | 2, 19, 20 | sylc 61 | 1 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐹‘𝐶) = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 〈cop 3401 class class class wbr 3785 ↦ cmpt 3839 ran crn 4364 Fun wfun 4916 ‘cfv 4922 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fv 4930 |
This theorem is referenced by: qliftval 6215 |
Copyright terms: Public domain | W3C validator |