| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anordc | GIF version | ||
| Description: Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120, but where the propositions are decidable. The forward direction, pm3.1 703, holds for all propositions, but the equivalence only holds given decidability. (Contributed by Jim Kingdon, 21-Apr-2018.) |
| Ref | Expression |
|---|---|
| anordc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcan 875 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∧ 𝜓))) | |
| 2 | ianordc 832 | . . . . 5 ⊢ (DECID 𝜑 → (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))) | |
| 3 | 2 | bicomd 139 | . . . 4 ⊢ (DECID 𝜑 → ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓))) |
| 4 | 3 | a1d 22 | . . 3 ⊢ (DECID 𝜑 → (DECID (𝜑 ∧ 𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)))) |
| 5 | 4 | con2biddc 807 | . 2 ⊢ (DECID 𝜑 → (DECID (𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
| 6 | 1, 5 | syld 44 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 DECID wdc 775 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: pm3.11dc 898 dn1dc 901 |
| Copyright terms: Public domain | W3C validator |