ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2biddc GIF version

Theorem con2biddc 807
Description: A contraposition deduction. (Contributed by Jim Kingdon, 11-Apr-2018.)
Hypothesis
Ref Expression
con2biddc.1 (𝜑 → (DECID 𝜒 → (𝜓 ↔ ¬ 𝜒)))
Assertion
Ref Expression
con2biddc (𝜑 → (DECID 𝜒 → (𝜒 ↔ ¬ 𝜓)))

Proof of Theorem con2biddc
StepHypRef Expression
1 con2biddc.1 . . . 4 (𝜑 → (DECID 𝜒 → (𝜓 ↔ ¬ 𝜒)))
2 bicom 138 . . . 4 ((𝜓 ↔ ¬ 𝜒) ↔ (¬ 𝜒𝜓))
31, 2syl6ib 159 . . 3 (𝜑 → (DECID 𝜒 → (¬ 𝜒𝜓)))
43con1biddc 803 . 2 (𝜑 → (DECID 𝜒 → (¬ 𝜓𝜒)))
5 bicom 138 . 2 ((¬ 𝜓𝜒) ↔ (𝜒 ↔ ¬ 𝜓))
64, 5syl6ib 159 1 (𝜑 → (DECID 𝜒 → (𝜒 ↔ ¬ 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  DECID wdc 775
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662
This theorem depends on definitions:  df-bi 115  df-dc 776
This theorem is referenced by:  anordc  897  xor3dc  1318
  Copyright terms: Public domain W3C validator