| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax4sp1 | GIF version | ||
| Description: A special case of ax-4 1440 without using ax-4 1440 or ax-17 1459. (Contributed by NM, 13-Jan-2011.) |
| Ref | Expression |
|---|---|
| ax4sp1 | ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equidqe 1465 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | |
| 2 | 1 | pm2.21i 607 | 1 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-ie2 1423 ax-8 1435 ax-i9 1463 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |